
1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

KUG1C3
Dasar Algoritma dan Pemrograman

Recursive Algorithm

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Sometimes, the best way to solve a problem is by
solving a smaller version of the exact same
problem first

Try to tear a sheet of paper into the same 8
pieces

2

What is recursion?

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

To solve this, we can just tear it 7 times as
follows:

That was an example of the application of looping

3

Tear paper into the same 8 pieces

1 2 3 4 5 6 7 8

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Or we can tear it into 2, and repeat the process
for each pieces 2 times

That is an example of the application of recursive

4

Tear paper into the same 8 pieces

a b

a

c

b

d

a e

c f

b g

d h

a e

c f

b g

d h

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Recursion is a technique that solves a problem by
solving a smaller problem of the same type

Recursion is a principle closely related to
mathematical induction.

F(0) = 0

F(x) = F(x-1) + 2

5

Some Definitions

 0
F(x) =
 F(x-1) + 2

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Example

Power of two

2n = 2 * 2n-1

20 = 1

Factorial

X! = X * (X-1)!

1! = 1

6

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Careful when writing

If we use iteration, we must be careful
not to create an infinite loop by accident:

 While (result > 0) do

 result ++

Oops!

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Careful when writing

Similarly, if we use recursion we must be
careful not to create an infinite chain of
function calls

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Remember the Rule!

An Algorithm must stop!

Define a rule that will stop the recursion

(initial set / base case)

–X! = X * (X-1)!

–0! = 1

Define a rule to reach the next iteration

(construct new element / step)

9

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Algorithm of the factorial function

Function Factorial(input : n : integer)

 if (n=0) then // base case

 1

 else

 n * Factorial(n-1)

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

12

Recursively Defined Functions

A famous example: The Fibonacci numbers

f(0) = 0, f(1) = 1

f(n) = f(n – 1) + f(n - 2)

f(0) = 0

f(1) = 1

f(2) = f(1) + f(0) = 1 + 0 = 1

f(3) = f(2) + f(1) = 1 + 1 = 2

f(4) = f(3) + f(2) = 2 + 1 = 3

f(5) = f(4) + f(3) = 3 + 2 = 5

f(6) = f(5) + f(4) = 5 + 3 = 8

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

13

Recursive Algorithms

Recursive Fibonacci Evaluation:

f(4)

f(3)

f(2)

f(1) f(0)

f(1)

f(2)

f(1) f(0)

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Recursive Algorithm

An algorithm is called recursive if it solves a
problem by reducing it to an instance of the same
problem with smaller input

A recursive function must contain at least one
non-recursive branch.

The recursive calls must eventually lead to a non-
recursive branch

14

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Recursion vs. iteration

For every recursive algorithm, there is an
equivalent iterative algorithm

Iteration can be used in place of
recursion

–An iterative algorithm uses a looping construct

–A recursive algorithm uses a branching
structure

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Recursion vs. iteration

Recursive solutions are often less
efficient, in terms of both time and
space, than iterative solutions

Recursion can simplify the solution of a
problem, often resulting in shorter, more
easily understood source code

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

How do I write a recursive function?

Determine the size factor

Determine the base case(s)

 (the one for which you know the answer)

Determine the general case(s)

 (the one where the problem is expressed as a smaller
version of itself)

Verify the algorithm

 (use the "Three-Question-Method")

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Three-Question Verification Method

The Base-Case Question:

– Is there a non-recursive way out of the function, and does
the routine work correctly for this "base" case?

The Smaller-Caller Question:

–Does each recursive call to the function involve a smaller
case of the original problem, leading inescapably to the
base case?

The General-Case Question:

–Assuming that the recursive call(s) work correctly, does
the whole function work correctly?

18

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

THANK YOU
20

